skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fluxá Rojas, Pedro"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Guzman, Juan C.; Ibsen, Jorge (Ed.)
  2. Abstract The Cosmology Large Angular Scale Surveyor (CLASS) is a telescope array that observes the cosmic microwave background over 75% of the sky from the Atacama Desert, Chile, at frequency bands centered near 40, 90, 150, and 220 GHz. This paper describes the CLASS data pipeline and maps for 40 GHz observations conducted from 2016 August to 2022 May. We demonstrate how well the CLASS survey strategy, with rapid (∼10 Hz) front-end modulation, recovers the large-scale Galactic polarization signal from the ground: the mapping transfer function recovers ∼67% (85%) ofEEandBB(VV) power atℓ= 20 and ∼35% (47%) atℓ= 10. We present linear and circular polarization maps over 75% of the sky. Simulations based on the data imply the maps have a white noise level of 110 μ K arcmin and correlated noise component rising at low-ℓasℓ−2.4. The transfer-function-corrected low-ℓcomponent is comparable to the white noise at the angular knee frequencies ofℓ≈ 18 (linear polarization) andℓ≈ 12 (circular polarization). Finally, we present simulations of the level at which expected sources of systematic error bias the measurements, finding subpercent bias for the Λ cold dark matterEEpower spectra. Bias fromE-to-Bleakage due to the data reduction pipeline and polarization angle uncertainty approaches the expected level for anr= 0.01BBpower spectrum. Improvements to the instrument calibration and the data pipeline will decrease this bias. 
    more » « less
  3. Abstract The Cosmology Large Angular Scale Surveyor (CLASS) is a four-telescope array observing the largest angular scales (2≲ ℓ ≲ 200) of the cosmic microwave background (CMB) polarization. These scales encode information about reionization and inflation during the early universe. The instrument stability necessary to observe these angular scales from the ground is achieved through the use of a variable-delay polarization modulator as the first optical element in each of the CLASS telescopes. Here, we develop a demodulation scheme used to extract the polarization timestreams from the CLASS data and apply this method to selected data from the first 2 yr of observations by the 40 GHz CLASS telescope. These timestreams are used to measure the 1/ f noise and temperature-to-polarization ( T → P ) leakage present in the CLASS data. We find a median knee frequency for the pair-differenced demodulated linear polarization of 15.12 mHz and a T → P leakage of <3.8 × 10 −4 (95% confidence) across the focal plane. We examine the sources of 1/ f noise present in the data and find the component of 1/ f due to atmospheric precipitable water vapor (PWV) has an amplitude of 203 ± 12 μ K RJ s for 1 mm of PWV when evaluated at 10 mHz; accounting for ∼17% of the 1/ f noise in the central pixels of the focal plane. The low levels of T → P leakage and 1/ f noise achieved through the use of a front-end polarization modulator are requirements for observing of the largest angular scales of the CMB polarization by the CLASS telescopes. 
    more » « less